5,764 research outputs found

    Removal of ecotoxicity of 17α-ethinylestradiol using TAML/peroxide water treatment

    Get PDF
    17α -ethinylestradiol (EE2), a synthetic oestrogen in oral contraceptives, is one of many pharmaceuticals found in inland waterways worldwide as a result of human consumption and excretion into wastewater treatment systems. At low parts per trillion (ppt), EE2 induces feminisation of male fish, diminishing reproductive success and causing fish population collapse. Intended water quality standards for EE2 set a much needed global precedent. Ozone and activated carbon provide effective wastewater treatments, but their energy intensities and capital/operating costs are formidable barriers to adoption. Here we describe the technical and environmental performance of a fast- developing contender for mitigation of EE2 contamination of wastewater based upon smallmolecule, full-functional peroxidase enzyme replicas called “TAML activators”. From neutral to basic pH, TAML activators with H2O2 efficiently degrade EE2 in pure lab water, municipal effluents and EE2-spiked synthetic urine. TAML/H2O2 treatment curtails estrogenicity in vitro and substantially diminishes fish feminization in vivo. Our results provide a starting point for a future process in which tens of thousands of tonnes of wastewater could be treated per kilogram of catalyst. We suggest TAML/H2O2 is a worthy candidate for exploration as an environmentally compatible, versatile, method for removing EE2 and other pharmaceuticals from municipal wastewaters.Heinz Endowments, the Swiss National Science Foundation, the Steinbrenner Institute for a Steinbrenner Doctoral Fellowship. NMR instrumentation at CMU was partially supported by NSF (CHE-0130903 and CHE-1039870)

    UBC-Nepal Expedition: Acute alterations in sympathetic nervous activity do not influence brachial artery endothelial function at sea-level and high-altitude.

    Get PDF
    Evidence indicates that increases in sympathetic nervous activity (SNA), and acclimatization to high-altitude (HA), may reduce endothelial function as assessed by brachial artery flow-mediated dilatation (FMD); however, it is unclear whether such changes in FMD are due to direct vascular constraint, or consequential altered hemodynamics (e.g. shear stress) associated with increased SNA as a consequence of exposure to HA. We hypothesized that: 1) at rest, SNA would be elevated and FMD would be reduced at HA compared to sea-level (SL); and 2) at SL and HA, FMD would be reduced when SNA was acutely increased, and elevated when SNA was acutely decreased. Using a novel, randomized experimental design, brachial artery FMD was assessed at SL (344m) and HA (5050m) in 14 participants during mild lower-body negative pressure (LBNP; -10 mmHg) and lower-body positive pressure (LBPP; +10 mmHg). Blood pressure (finger photoplethysmography), heart rate (electrodcardiogram), oxygen saturation (pulse oximetry), and brachial artery blood flow and shear rate (Duplex ultrasound) were recorded during LBNP, control, and LBPP trials. Muscle SNA was recorded (via microneurography) in a subset of participants (n=5). Our findings were: 1) at rest, SNA was elevated (P<0.01), and absolute FMD was reduced (P=0.024), but relative FMD remained unaltered (P=0.061), at HA compared to SL, and 2) despite significantly altering SNA with LBNP (+60.3±25.5%) and LBPP (-37.2±12.7%) (P<0.01), FMD was unaltered at SL (P=0.448), and HA (P=0.537). These data indicate that acute and mild changes in SNA do not directly influence brachial artery FMD at SL or HA

    Charged Magnetic Brane Solutions in AdS_5 and the fate of the third law of thermodynamics

    Get PDF
    We construct asymptotically AdS_5 solutions to 5-dimensional Einstein-Maxwell theory with Chern-Simons term which are dual to 4-dimensional gauge theories, including N=4 SYM theory, in the presence of a constant background magnetic field B and a uniform electric charge density \rho. For the solutions corresponding to supersymmetric gauge theories, we find numerically that a small magnetic field causes a drastic decrease in the entropy at low temperatures. The near-horizon AdS_2 \times R^3 geometry of the purely electrically charged brane thus appears to be unstable under the addition of a small magnetic field. Based on this observation, we propose a formulation of the third law of thermodynamics (or Nernst theorem) that can be applied to black holes in the AdS/CFT context. We also find interesting behavior for smaller, non-supersymmetric, values of the Chern-Simons coupling k. For k=1 we exhibit exact solutions corresponding to warped AdS_3 black holes, and show that these can be connected to asymptotically AdS_5 spacetime. For k\leq 1 the entropy appears to go to a finite value at extremality, but the solutions still exhibit a mild singularity at strictly zero temperature. In addition to our numerics, we carry out a complete perturbative analysis valid to order B^2, and find that this corroborates our numerical results insofar as they overlap.Comment: 45 pages v2: added note about subsequent results found in arXiv:1003.130

    UBC-Nepal Expedition: Acute alterations in sympathetic nervous activity do not influence brachial artery endothelial function at sea-level and high-altitude.

    Get PDF
    Evidence indicates that increases in sympathetic nervous activity (SNA), and acclimatization to high-altitude (HA), may reduce endothelial function as assessed by brachial artery flow-mediated dilatation (FMD); however, it is unclear whether such changes in FMD are due to direct vascular constraint, or consequential altered hemodynamics (e.g. shear stress) associated with increased SNA as a consequence of exposure to HA. We hypothesized that: 1) at rest, SNA would be elevated and FMD would be reduced at HA compared to sea-level (SL); and 2) at SL and HA, FMD would be reduced when SNA was acutely increased, and elevated when SNA was acutely decreased. Using a novel, randomized experimental design, brachial artery FMD was assessed at SL (344m) and HA (5050m) in 14 participants during mild lower-body negative pressure (LBNP; -10 mmHg) and lower-body positive pressure (LBPP; +10 mmHg). Blood pressure (finger photoplethysmography), heart rate (electrodcardiogram), oxygen saturation (pulse oximetry), and brachial artery blood flow and shear rate (Duplex ultrasound) were recorded during LBNP, control, and LBPP trials. Muscle SNA was recorded (via microneurography) in a subset of participants (n=5). Our findings were: 1) at rest, SNA was elevated (P<0.01), and absolute FMD was reduced (P=0.024), but relative FMD remained unaltered (P=0.061), at HA compared to SL, and 2) despite significantly altering SNA with LBNP (+60.3±25.5%) and LBPP (-37.2±12.7%) (P<0.01), FMD was unaltered at SL (P=0.448), and HA (P=0.537). These data indicate that acute and mild changes in SNA do not directly influence brachial artery FMD at SL or HA

    Intestinal, extra-intestinal and systemic sequelae of Toxoplasma gondii induced acute ileitis in mice harboring a human gut microbiota

    Get PDF
    Background Within seven days following peroral high dose infection with Toxoplasma gondii susceptible conventionally colonized mice develop acute ileitis due to an underlying T helper cell (Th) -1 type immunopathology. We here addressed whether mice harboring a human intestinal microbiota developed intestinal, extra-intestinal and systemic sequelae upon ileitis induction. Methodology/Principal findings Secondary abiotic mice were generated by broad- spectrum antibiotic treatment and associated with a complex human intestinal microbiota following peroral fecal microbiota transplantation. Within three weeks the human microbiota had stably established in the murine intestinal tract as assessed by quantitative cultural and culture-independent (i.e. molecular 16S rRNA based) methods. At day 7 post infection (p.i.) with 50 cysts of T. gondii strain ME49 by gavage human microbiota associated (hma) mice displayed severe clinical, macroscopic and microscopic sequelae indicating acute ileitis. In diseased hma mice increased numbers of innate and adaptive immune cells within the ileal mucosa and lamina propria and elevated intestinal secretion of pro-inflammatory mediators including IFN-γ, IL-12 and nitric oxide could be observed at day 7 p.i. Ileitis development was accompanied by substantial shifts in intestinal microbiota composition of hma mice characterized by elevated total bacterial loads and increased numbers of intestinal Gram-negative commensals such as enterobacteria and Bacteroides / Prevotella species overgrowing the small and large intestinal lumen. Furthermore, viable bacteria translocated from the inflamed ileum to extra- intestinal including systemic compartments. Notably, pro-inflammatory immune responses were not restricted to the intestinal tract as indicated by increased pro-inflammatory cytokine secretion in extra-intestinal (i.e. liver and kidney) and systemic compartments including spleen and serum. Conclusion/Significance With respect to the intestinal microbiota composition “humanized” mice display acute ileitis following peroral high dose T. gondii infection. Thus, hma mice constitute a suitable model to further dissect the interactions between pathogens, human microbiota and vertebrate host immunity during acute intestinal inflammation

    Increased Hepatitis E Virus Seroprevalence Correlates with Lower CD4+Cell Counts in HIV-Infected Persons in Argentina

    Get PDF
    Hepatitis E virus (HEV) is a single-stranded RNA virus that can cause hepatitis in an epidemic fashion. HEV usually causes asymptomatic or limited acute infections in immunocompetent individuals, whereas in immunosuppressed individuals such as transplant recipients, HEV can cause chronic infections. The risks and outcomes of HEV co-infection in patients infected with human immunodeficiency virus (HIV) are poorly characterized. We used a third generation immunoassay to measure serum IgG antibodies specific for HEV in 204 HIV-infected individuals from Argentina and a control group of 433 HIV-negative individuals. We found 15 of 204 (7.3%, 95% CI 3.74-10.96%) individuals in the HIV-positive group to have positive HEV IgG levels suggestive of previous infection, compared to 19 of 433 (4.4%, 95% CI 2.5-6.3%) individuals in the HIV-negative control group (p = 0.12). Among HIV-positive individuals, those with HEV seropositivity had lower CD4 counts compared to those that were HEV seronegative (average CD4 count of 234 vs 422 mm(3), p = 0.01), indicating that patients with lower CD4 counts were more likely to be HEV IgG positive. Moreover, HEV seropositivity in patients with CD4 counts &lt;200 mm(3) was 16%, compared to 4.5% in those with CD4 counts &gt;200 mm(3) (p = 0.012). We found a positive PCR result for HEV in one individual. Our study found that increased seroprevalence of HEV IgG correlated with lower CD4 counts in HIV-infected patients in Argentina

    Similarities between structural distortions under pressure and chemical doping in superconducting BaFe2As2

    Full text link
    The discovery of a new family of high Tc materials, the iron arsenides (FeAs), has led to a resurgence of interest in superconductivity. Several important traits of these materials are now apparent, for example, layers of iron tetrahedrally coordinated by arsenic are crucial structural ingredients. It is also now well established that the parent non-superconducting phases are itinerant magnets, and that superconductivity can be induced by either chemical substitution or application of pressure, in sharp contrast to the cuprate family of materials. The structure and properties of chemically substituted samples are known to be intimately linked, however, remarkably little is known about this relationship when high pressure is used to induce superconductivity in undoped compounds. Here we show that the key structural features in BaFe2As2, namely suppression of the tetragonal to orthorhombic phase transition and reduction in the As-Fe-As bond angle and Fe-Fe distance, show the same behavior under pressure as found in chemically substituted samples. Using experimentally derived structural data, we show that the electronic structure evolves similarly in both cases. These results suggest that modification of the Fermi surface by structural distortions is more important than charge doping for inducing superconductivity in BaFe2As2

    Phase diagram for non-axisymmetric plasma balls

    Full text link
    Plasma balls and rings emerge as fluid holographic duals of black holes and black rings in the hydrodynamic/gravity correspondence for the Scherk-Schwarz AdS system. Recently, plasma balls spinning above a critical rotation were found to be unstable against m-lobed perturbations. In the phase diagram of stationary solutions the threshold of the instability signals a bifurcation to a new phase of non-axisymmetric configurations. We find explicitly this family of solutions and represent them in the phase diagram. We discuss the implications of our results for the gravitational system. Rotating non-axisymmetric black holes necessarily radiate gravitational waves. We thus emphasize that it would be important, albeit possibly out of present reach, to have a better understanding of the hydrodynamic description of gravitational waves and of the gravitational interaction between two bodies. We also argue that it might well be that a non-axisymmetric m-lobed instability is also present in Myers-Perry black holes for rotations below the recently found ultraspinning instability.Comment: 1+22 pages, 3 figures. v2: minor corrections and improvements, matches published versio
    • …
    corecore